Advanced Energy Materials 2018-03-25

H2V3O8 Nanowire/Graphene Electrodes for Aqueous Rechargeable Zinc Ion Batteries with High Rate Capability and Large Capacity

Qiang Pang; Congli Sun; Yanhao Yu; Kangning Zhao; Ziyi Zhang; Paul M. Voyles; Gang Chen; Yingjin Wei; Xudong Wang

Index: 10.1002/aenm.201800144

Full Text: HTML

Abstract

Aqueous rechargeable zinc ion batteries are considered a promising candidate for large‐scale energy storage owing to their low cost and high safety nature. A composite material comprised of H2V3O8 nanowires (NWs) wrapped by graphene sheets and used as the cathode material for aqueous rechargeable zinc ion batteries is developed. Owing to the synergistic merits of desirable structural features of H2V3O8 NWs and high conductivity of the graphene network, the H2V3O8 NW/graphene composite exhibits superior zinc ion storage performance including high capacity of 394 mA h g−1 at 1/3 C, high rate capability of 270 mA h g−1 at 20 C and excellent cycling stability of up to 2000 cycles with a capacity retention of 87%. The battery offers a high energy density of 168 W h kg−1 at 1/3 C and a high power density of 2215 W kg−1 at 20 C (calculated based on the total weight of H2V3O8 NW/graphene composite and the theoretically required amount of Zn). Systematic structural and elemental characterization confirm the reversible Zn2+ and water cointercalation electrochemical reaction mechanism. This work brings a new prospect of designing high‐performance aqueous rechargeable zinc ion batteries for grid‐scale energy storage.

Latest Articles:

Eco‐Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges

2018-04-06

[10.1002/aenm.201800056]

Carrier Transport and Recombination in Efficient “All‐Small‐Molecule” Solar Cells with the Nonfullerene Acceptor IDTBR

2018-04-03

[10.1002/aenm.201800264]

High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases

2018-03-30

[10.1002/aenm.201800297]

Lewis Acid Doping Induced Synergistic Effects on Electronic and Morphological Structure for Donor and Acceptor in Polymer Solar Cells

2018-03-29

[10.1002/aenm.201703672]

Low‐Defect and Low‐Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode

2018-03-25

[10.1002/aenm.201703238]

More Articles...