Advanced Energy Materials 2018-03-25

Low‐Defect and Low‐Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode

Lifen Xiao; Haiyan Lu; Yongjin Fang; Maria L. Sushko; Yuliang Cao; Xinping Ai; Hanxi Yang; Jun Liu

Index: 10.1002/aenm.201703238

Full Text: HTML

Abstract

Hard carbon is regarded as the most promising anode material for commercialization of Na ion batteries because of its high capacity and low cost. At present, the practical utilization of hard carbon anodes is largely limited by the low initial Coulombic efficiency (ICE). Na ions have been found to adopt an adsorption–insertion storage mechanism. In this paper a systematic way to control the defect concentration and porosity of hard carbon with similar overall architectures is shown. This study elucidates that the defects in the graphite layers are directly related to the ICE as they would trap Na ions and create a repulsive electric field for other Na ions so as to shorten the low‐voltage intercalation capacity. The obtained low defect and porosity hard carbon electrode has achieved the highest ICE of 86.1% (94.5% for pure hard carbon material by subtracting that of the conductive carbon black), reversible capacity of 361 mA h g−1, and excellent cycle stability (93.4% of capacity retention over 100 cycles). This result sheds light on feasible design principles for high performance Na storage hard carbon: suitable carbon layer distance and defect free graphitic layers.

Latest Articles:

Eco‐Friendly Higher Manganese Silicide Thermoelectric Materials: Progress and Future Challenges

2018-04-06

[10.1002/aenm.201800056]

Carrier Transport and Recombination in Efficient “All‐Small‐Molecule” Solar Cells with the Nonfullerene Acceptor IDTBR

2018-04-03

[10.1002/aenm.201800264]

High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases

2018-03-30

[10.1002/aenm.201800297]

Lewis Acid Doping Induced Synergistic Effects on Electronic and Morphological Structure for Donor and Acceptor in Polymer Solar Cells

2018-03-29

[10.1002/aenm.201703672]

Electrochemical CO2 Reduction with Atomic Iron‐Dispersed on Nitrogen‐Doped Graphene

2018-03-25

[10.1002/aenm.201703487]

More Articles...