L W Fitzgerald, D S Conklin, C M Krause, A P Marshall, J P Patterson, D P Tran, G Iyer, W A Kostich, B L Largent, P R Hartig
Index: J. Neurochem. 72(5) , 2127-34, (1999)
Full Text: HTML
Many modern models of receptor-G protein function assume that there is a direct relationship between high-affinity agonist binding and efficacy. The validity of this assumption has been recently questioned for the serotonin 5-HT2A receptor. We examined the intrinsic activities of various ligands in activating phosphoinositide hydrolysis and measured their respective binding affinities to the high- and low-affinity states of the 5-HT2C (VNV isoform) and 5-HT(2A) receptors. Ligand binding affinities for the high-affinity state of the receptors were determined using 1-(4-[125I]iodo-2,5-dimethoxyphenyl)2-aminopropane, whereas [3H]mesulergine and N-[3H]methylspiperone were used, in the presence of excess guanine nucleotide [guanosine 5'-O-(3-thiotriphosphate)], to define binding to the low-affinity state of the 5-HT2C and 5-HT2A receptors, respectively. Antagonists labeled the high- and low-affinity states of each receptor with comparable affinities. Previously identified inverse agonists of the 5-HT2C receptor behaved as silent antagonists in our systems even when the receptor was overexpressed at a relatively high density. In contrast, the ability of agonists to bind differentially to the high- and low-affinity states of the 5-HT2A and 5-HT2C receptors was highly correlated (r2 = 0.86 and 0.96, respectively) with their intrinsic activities. These data suggest that high-affinity agonist states can account for agonist efficacy at human 5-HT2A or 5-HT2C receptors without the need for considering additional transition or active states of the receptor-ligand complex. The procedure described herein may expedite drug discovery efforts by predicting intrinsic activities of ligands solely from ligand binding assays.
Structure | Name/CAS No. | Molecular Formula | Articles |
---|---|---|---|
![]() |
SPIPERONE N-METHYL- HCL
CAS:87539-19-3 |
C24H28FN3O2 |
Dopamine beta-hydroxylase-deficient mice have normal densiti...
2010-09-01 [Synapse 64(9) , 699-703, (2010)] |
Frightening music triggers rapid changes in brain monoamine ...
2012-10-01 [J. Nucl. Med. 53(10) , 1573-8, (2012)] |
Competition between 11C-raclopride and endogenous dopamine i...
2010-02-01 [Nucl. Med. Commun. 31(2) , 159-66, (2010)] |
A crystallographic and molecular modeling study of butyrophe...
1998-12-01 [J. Pharm. Sci. 87(12) , 1496-501, (1998)] |
Effects of endogenous neurotransmitters on the in vivo bindi...
2001-11-01 [Biol. Psychiatry 25(5) , 679-89, (2001)] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved