Journal of Medicinal Chemistry 1986-09-01

Carbocyclic analogues of 5-halocytosine nucleosides.

Y F Shealy, C A O'Dell, G Arnett, W M Shannon, M C Thorpe, J M Riordan, W C Coburn

Index: J. Med. Chem. 29(9) , 1720-5, (1986)

Full Text: HTML

Abstract

Carbocyclic analogues of 5-halocytosine nucleosides were prepared by direct halogenation of the carbocyclic analogues of cytidine, 2'-deoxycytidine, 3'-deoxycytidine, or ara-C. The 5-chloro and 5-bromo derivatives of the cytidine (carbodine) and of the 2'-deoxycytidine analogues and the 5-iodo derivatives of all four of the cytosine nucleoside analogues were prepared. All of the C-5-halocytosine nucleosides, as well as the parent C-cytosine nucleosides, were tested against a strain of herpes simplex virus type 1 (HSV-1) that induces thymidine kinase in host cells. Carbodine, 5-bromocarbodine, C-2'-deoxycytidine, C-5-bromo-2'-deoxycytidine, the four C-5-iodocytosine nucleosides, and C-ara-C inhibited replication of this strain of HSV-1 in cultured cells. Most of these compounds were tested also against the type 2 virus (HSV-2) in vitro and were active. The greatest activity observed was exerted by C-5-iodo-2'-deoxycytidine in inhibiting replication of HSV-1 in L929 cells. In tests against these DNA viruses, carbodine, a ribofuranoside analogue that had been shown previously to be highly active against human influenza A virus in vitro, was the most active compound against HSV-2 and one of the most active compounds against HSV-1 in Vero cells. 5-Bromocarbodine was active against influenza virus, but it was less active than carbodine.

Related Compounds

Structure Name/CAS No. Articles
Ibacitabine Structure Ibacitabine
CAS:611-53-0