J J Pitt, J J Gorman
Index: Anal. Biochem. 248 , 63-75, (1997)
Full Text: HTML
The 1-phenyl-3-methyl-5-pyrazolone (PMP) derivatives of monosaccharides, maltooligosaccharides, and oligosaccharides enzymatically released from asparagine-linked sites in ribonuclease B and fetuin have been investigated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Use of the matrix 2,6-dihydroxyacetophenone containing diammonium hydrogen citrate (DHAP/DAHC) resulted in predominance of protonated over sodiated pseudomolecular ions of PMP-derivatized oligosaccharides. By comparison, the matrices alpha-cyano-4-hydroxycinnamic acid and 2,5-dihydroxybenzoic acid resulted in predominantly sodiated pseudomolecular ions. In addition, tendencies for fragmentation of PMP-oligosaccharide derivatives were significantly lower with DHAP/DAHC which enabled meaningful data to be obtained in reflector mode, even for samples with high excipient levels. The relative magnitude of the ion signals for PMP-derivatized maltooligosaccharides and ribonuclease B oligosaccharides correlated well with the oligomer distribution apparent by HPLC. PMP-maltohexose was used as an internal standard to quantitate PMP-oligosaccharides from ribonuclease B and asialofetuin in crude derivatization mixtures. A linear relationship was observed between the ratio of the intensities of pseudomolecualr ions and the amount of glycoprotein derivatized. The limit of detection for the major oligosaccharide of each protein was reached with ca. 3 micrograms of glycoprotein but may be further enhanced by optimization of sample handling. PMP derivatives of sialylated fetuin oligosaccharides were readily detected as protonated pseudomolecular ions by linear mode analyses. By comparison, reflector mode analyses revealed substantially reduced magnitudes of protonated pseudomolecular ions and considerable post-source fragmentation of sialic acid residues. The PMP derivatives of fetuin oligosaccharides were also amenable to exoglycosidase treatment as shown by the mass shifts found upon treatment with sialidase.
Structure | Name/CAS No. | Molecular Formula | Articles |
---|---|---|---|
![]() |
2,6-Dihydroxyacetophenone
CAS:699-83-2 |
C8H8O3 |
Molecular modeling and inhibition of phospholipase A2by poly...
2009-01-01 [Eur. J. Med. Chem. 44 , 312-21, (2009)] |
Novel squalene-hopene cyclase inhibitors derived from hydrox...
2004-10-01 [Chem. Pharm. Bull. 52(10) , 1171-4, (2004)] |
MALDI mass spectrometry in the solution of some forensic pro...
2004-12-02 [Forensic Sci. Int. 146 Suppl , S83-5, (2004)] |
Study of the acute human health effects of intermediates in ...
1995-04-01 [Ann. Occup. Hyg. 39(2) , 235-40, (1995)] |
Enhanced MALDI-TOF MS analysis of phosphopeptides using an o...
2010-01-01 [J. Biomed. Biotechnol. 2010 , 759690, (2010)] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved