Journal of Immunology 2014-09-15

The immunotherapeutic role of regulatory T cells in Leishmania (Viannia) panamensis infection.

Allison Ehrlich, Tiago Moreno Castilho, Karen Goldsmith-Pestana, Wook-Jin Chae, Alfred L M Bothwell, Tim Sparwasser, Diane McMahon-Pratt

Index: J. Immunol. 193(6) , 2961-70, (2014)

Full Text: HTML

Abstract

Leishmania (Viannia) parasites are etiological agents of cutaneous leishmaniasis in the New World. Infection is characterized by a mixed Th1/Th2 inflammatory response, which contributes to disease pathology. However, the role of regulatory T cells (Tregs) in Leishmania (Viannia) disease pathogenesis is unclear. Using the mouse model of chronic L. (V.) panamensis infection, we examined the hypothesis that Treg functionality contributes to control of pathogenesis. Upon infection, Tregs (CD4(+)Foxp3(+)) presented with a dysregulated phenotype, in that they produced IFN-γ, expressed Tbet, and had a reduced ability to suppress T cell proliferation in vitro. Targeted ablation of Tregs resulted in enlarged lesions, increased parasite load, and enhanced production of IL-17 and IFN-γ, with no change in IL-10 and IL-13 levels. This indicated that an increased inflammatory response was commensurate with disease exacerbation and that the remaining impaired Tregs were important in regulation of disease pathology. Conversely, adoptive transfer of Tregs from naive mice halted disease progression, lowered parasite burden, and reduced cytokine production (IL-10, IL-13, IL-17, IFN-γ). Because Tregs appeared to be important for controlling infection, we hypothesized that their expansion could be used as an immunotherapeutic treatment approach. As a proof of principle, chronically infected mice were treated with rIL-2/anti-IL-2 Ab complex to expand Tregs. Treatment transitorily increased the numbers and percentage of Tregs (draining lymph node, spleen), which resulted in reduced cytokine responses, ameliorated lesions, and reduced parasite load (10(5)-fold). Thus, immunotherapy targeting Tregs could provide an alternate treatment strategy for leishmaniasis caused by Leishmania (Viannia) parasites. Copyright © 2014 by The American Association of Immunologists, Inc.

Related Compounds

Structure Name/CAS No. Articles
5-(((2,5-DIOXOPYRROLIDIN-1-YL)OXY)CARBONYL)-3-OXO-3H-SPIRO[ISOBENZOFURAN-1,9'-XANTHENE]-3',6'-DIYL DIACETATE Structure 5-(((2,5-DIOXOPYRROLIDIN-1-YL)OXY)CARBONYL)-3-OXO-3H-SPIRO[ISOBENZOFURAN-1,9'-XANTHENE]-3',6'-DIYL DIACETATE
CAS:150206-05-6
Indoximod Structure Indoximod
CAS:110117-83-4
5-Carboxyfluorescein diacetate N-succinimidyl ester Structure 5-Carboxyfluorescein diacetate N-succinimidyl ester
CAS:150347-59-4