FEBS Journal 2013-12-01

Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.

Julie A Reisz, Erika Bechtold, S Bruce King, Leslie B Poole, Cristina M Furdui

Index: FEBS J. 280(23) , 6150-61, (2013)

Full Text: HTML

Abstract

Cellular exposure to reactive oxygen species induces rapid oxidation of DNA, proteins, lipids and other biomolecules. At the proteome level, cysteine thiol oxidation is a prominent post-translational process that is implicated in normal physiology and numerous pathologies. Methods for investigating protein oxidation include direct labeling with selective chemical probes and indirect tag-switch techniques. Common to both approaches is chemical blocking of free thiols using reactive electrophiles to prevent post-lysis oxidation or other thiol-mediated cross-reactions. These reagents are used in large excess, and their reactivity with cysteine sulfenic acid, a critical oxoform in numerous proteins, has not been investigated. Here we report the reactivity of three thiol-blocking electrophiles, iodoacetamide, N-ethylmaleimide and methyl methanethiosulfonate, with protein sulfenic acid and dimedone, the structural core of many sulfenic acid probes. We demonstrate that covalent cysteine -SOR (product) species are partially or fully susceptible to reduction by dithiothreitol, tris(2-carboxyethyl)phosphine and ascorbate, regenerating protein thiols, or, in the case of ascorbate, more highly oxidized species. The implications of this reactivity on detection methods for protein sulfenic acids and S-nitrosothiols are discussed. © 2013 FEBS.

Related Compounds

Structure Name/CAS No. Articles
Iodoacetamide Structure Iodoacetamide
CAS:144-48-9
Dimedone Structure Dimedone
CAS:126-81-8
N-ethylmaleimide Structure N-ethylmaleimide
CAS:128-53-0
Methyl Methanethiosulfonate Structure Methyl Methanethiosulfonate
CAS:2949-92-0
Methyl methanesulfonate Structure Methyl methanesulfonate
CAS:66-27-3