Journal of Leukocyte Biology 2015-12-01

Toll-like receptor 4-interacting SPA4 peptide suppresses the NLRP3 inflammasome in response to LPS and ATP stimuli.

Vijay Ramani, Shanjana Awasthi

Index: J. Leukoc. Biol. 98 , 1037-48, (2015)

Full Text: HTML

Abstract

Inflammation is induced because of interplay among multiple signaling pathways and molecules during infectious and noninfectious tissue injuries. Crosstalk between Toll-like receptor-4 signaling and the neuronal apoptosis inhibitor protein, major histocompatibility class 2 transcription activator, incompatibility locus protein from Podospora anserina, and telomerase-associated protein (NACHT), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome against pathogen- or damage-associated molecular patterns can cause exaggerated inflammation. We previously established that the Toll-like receptor-4-interacting SPA4 peptide suppresses gram-negative bacterial lipopolysaccharide (Toll-like receptor-4 ligand)-induced nuclear factor-κB and inflammatory response. In the present study, we hypothesized that the SPA4 peptide exerts its anti-inflammatory effects by suppressing the crosstalk between Toll-like receptor-4 signaling and the NLRP3 inflammasome. We evaluated binding of the lipopolysaccharide-ligand to cell-surface Toll-like receptor-4 in the presence or absence of adenosine triphosphate (an NLRP3 inflammasome inducer) by flow cytometry. The expression and activity of NLRP3 inflammasome-related parameters were studied in cells challenged with lipopolysaccharide and adenosine triphosphate using molecular and immunologic methods. The cells were challenged with lipopolysaccharide and treated with SPA4 peptide before (pre-adenosine triphosphate) or after (post-adenosine triphosphate) secondary challenge with adenosine triphosphate. Our data demonstrate that the Toll-like receptor-4-interacting SPA4 peptide does not affect the binding of lipopolysaccharide to Toll-like receptor-4 in the presence or absence of adenosine triphosphate. We also found that the SPA4 peptide inhibits mRNA and cellular protein levels of pro-interleukin-1β and NLRP3, formation of the NLRP3 inflammasome, caspase activity, and release of interleukin-1β. Furthermore, the SPA4 peptide treatment reduced the secreted levels of interleukin-1β from cells overexpressing Toll-like receptor-4 compared with cells expressing the dominant-negative form of Toll-like receptor-4. Together our results suggest that the SPA4 peptide exerts its anti-inflammatory activity by suppressing Toll-like receptor-4-priming of the NLRP3 inflammasome. © Society for Leukocyte Biology.

Related Compounds

Structure Name/CAS No. Articles
Sodium Fluoride Structure Sodium Fluoride
CAS:7681-49-4
sodium chloride Structure sodium chloride
CAS:7647-14-5
sodium dodecyl sulfate Structure sodium dodecyl sulfate
CAS:151-21-3
HEPES Structure HEPES
CAS:7365-45-9
Sodium deoxycholate Structure Sodium deoxycholate
CAS:302-95-4
SODIUM CHLORIDE-35 CL Structure SODIUM CHLORIDE-35 CL
CAS:20510-55-8
Sodium orthovanadate Structure Sodium orthovanadate
CAS:13721-39-6
Glibenclamide Structure Glibenclamide
CAS:10238-21-8
DL-Dithiothreitol Structure DL-Dithiothreitol
CAS:3483-12-3
Ethylenediaminetetraacetic acid Structure Ethylenediaminetetraacetic acid
CAS:60-00-4