Pierre Le Doussal and Thimothée Thiery
Index: 10.1103/PhysRevE.96.010102
Full Text: HTML
Although time-dependent random media with short-range correlations lead to (possibly biased) normal tracer diffusion, anomalous fluctuations occur away from the most probable direction. This was pointed out recently in one-dimensional (1D) lattice random walks, where statistics related to the 1D Kardar-Parisi-Zhang (KPZ) universality class, i.e., the Gaussian unitary ensemble Tracy-Widom distribution, were shown to arise. Here, we provide a simple picture for this correspondence, directly in the continuum, which allows one to study arbitrary space dimensions and to predict a variety of universal distributions. In d=1, we predict and verify numerically the emergence of the Gaussian orthogonal ensemble Tracy-Widom distribution for fluctuations of the transition probability. In d=3, we predict a phase transition from Gaussian fluctuations to three-dimensional KPZ-type fluctuations as the bias is increased. We predict KPZ universal distributions for the arrival time of a first particle from a cloud diffusing in such media.
|
Coupling of lipid membrane elasticity and in-plane dynamics
2017-07-19 [10.1103/PhysRevE.96.012410] |
|
Publisher's Note: Asymmetric transmission of sound wave in c...
2017-07-19 [10.1103/PhysRevE.96.019901] |
|
Machine-learning approach for local classification of crysta...
2017-07-19 [10.1103/PhysRevE.96.011301] |
|
Modulated phases in a three-dimensional Maier-Saupe model wi...
2017-07-19 [10.1103/PhysRevE.96.012137] |
|
Ballistic front dynamics after joining two semi-infinite qua...
2017-07-19 [10.1103/PhysRevE.96.012138] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2026 ChemSrc All Rights Reserved