Kuan-Yu Tsang, Yei-Chen Lai, Yun-Wei Chiang, and Yi-Fan Chen
Index: 10.1103/PhysRevE.96.012410
Full Text: HTML
Biomembranes exhibit liquid and solid features concomitantly with their in-plane fluidity and elasticity tightly regulated by cells. Here, we present experimental evidence supporting the existence of the dynamics-elasticity correlations for lipid membranes and propose a mechanism involving molecular packing densities to explain them. This paper thereby unifies, at the molecular level, the aspects of the continuum mechanics long used to model the two membrane features. This ultimately may elucidate the universal physical principles governing the cellular phenomena involving biomembranes.
Publisher's Note: Asymmetric transmission of sound wave in c...
2017-07-19 [10.1103/PhysRevE.96.019901] |
Machine-learning approach for local classification of crysta...
2017-07-19 [10.1103/PhysRevE.96.011301] |
Modulated phases in a three-dimensional Maier-Saupe model wi...
2017-07-19 [10.1103/PhysRevE.96.012137] |
Ballistic front dynamics after joining two semi-infinite qua...
2017-07-19 [10.1103/PhysRevE.96.012138] |
Production rate of the system-bath mutual information
2017-07-19 [10.1103/PhysRevE.96.012139] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved