Masashi K. Kajita, Kazuyuki Aihara, and Tetsuya J. Kobayashi
Index: 10.1103/PhysRevE.96.012405
Full Text: HTML
Specific interactions between receptors and their target ligands in the presence of nontarget ligands are crucial for biological processes such as T cell ligand discrimination. To discriminate between the target and nontarget ligands, cells have to increase specificity to the target ligands by amplifying the small differences in affinity among ligands. In addition, sensitivity to the ligand concentration and quick discrimination are also important to detect low amounts of target ligands and facilitate fast cellular decision making after ligand recognition. In this work we propose a mechanism for nonlinear specificity amplification (ultraspecificity) based on zero-order saturating reactions, which was originally proposed to explain nonlinear sensitivity amplification (ultrasensitivity) to the ligand concentration. In contrast to the previously proposed proofreading mechanisms that amplify the specificity by a multistep reaction, our model can produce an optimal balance of specificity, sensitivity, and quick discrimination. Furthermore, we show that a model for insensitivity to a large number of nontarget ligands can be naturally derived from a model with the zero-order ultraspecificity. The zero-order ultraspecificity, therefore, may provide an alternative way to understand ligand discrimination from the viewpoint of nonlinear properties in biochemical reactions.
|
Coupling of lipid membrane elasticity and in-plane dynamics
2017-07-19 [10.1103/PhysRevE.96.012410] |
|
Publisher's Note: Asymmetric transmission of sound wave in c...
2017-07-19 [10.1103/PhysRevE.96.019901] |
|
Machine-learning approach for local classification of crysta...
2017-07-19 [10.1103/PhysRevE.96.011301] |
|
Modulated phases in a three-dimensional Maier-Saupe model wi...
2017-07-19 [10.1103/PhysRevE.96.012137] |
|
Ballistic front dynamics after joining two semi-infinite qua...
2017-07-19 [10.1103/PhysRevE.96.012138] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2026 ChemSrc All Rights Reserved