Jeffrey L. Moran, Jonathan D. Posner
Index: 10.1146/annurev-fluid-122414-034456
Full Text: HTML
It is well-known that micro- and nanoparticles can move by phoretic effects in response to externally imposed gradients of scalar quantities such as chemical concentration or electric potential. A class of active colloids can propel themselves through aqueous media by generating local gradients of concentration and electrical potential via surface reactions. Phoretic active colloids can be controlled using external stimuli and can mimic collective behaviors exhibited by many biological swimmers. Low–Reynolds number physicochemical hydrodynamics imposes unique challenges and constraints that must be understood for the practical potential of active colloids to be realized. Here, we review the rich physics underlying the operation of phoretic active colloids, describe their interactions and collective behaviors, and discuss promising directions for future research.
Impact on Granular Beds
2017-01-05 [10.1146/annurev-fluid-010816-060213] |
Particle Migration due to Viscoelasticity of the Suspending ...
2017-01-05 [10.1146/annurev-fluid-010816-060150] |
Cloud-Top Entrainment in Stratocumulus Clouds
2017-01-05 [10.1146/annurev-fluid-010816-060231] |
Recent Advances in Understanding of Thermal Expansion Effect...
2017-01-05 [10.1146/annurev-fluid-010816-060104] |
Saph and Schoder and the Friction Law of Blasius
2017-01-05 [10.1146/annurev-fluid-080316-121100] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved