Devaraj van der Meer
Index: 10.1146/annurev-fluid-010816-060213
Full Text: HTML
The impact of an object on a granular solid is an ubiquitous phenomenon in nature, the scale of which ranges from the impact of a raindrop onto sand all the way to that of a large asteroid on a planet. Despite the obvious relevance of these impact events, the study of the underlying physics mechanisms that guide them is relatively young, with most work concentrated in the past decade. Upon impact, an object starts to interact with a granular bed and experiences a drag force from the sand. This ultimately leads to phenomena such as crater formation and the creation of a transient cavity that upon collapse may cause a jet to appear from above the surface of the sand. This review provides an overview of research that targets these phenomena, from the perspective of the analogous but markedly different impact of an object on a liquid. It successively addresses the drag an object experiences inside a granular bed, the expansion and collapse of the cavity created by the object leading to the formation of a jet, and the remarkable role played by the air that resides within the pores between the grains.
Particle Migration due to Viscoelasticity of the Suspending ...
2017-01-05 [10.1146/annurev-fluid-010816-060150] |
Cloud-Top Entrainment in Stratocumulus Clouds
2017-01-05 [10.1146/annurev-fluid-010816-060231] |
Recent Advances in Understanding of Thermal Expansion Effect...
2017-01-05 [10.1146/annurev-fluid-010816-060104] |
Saph and Schoder and the Friction Law of Blasius
2017-01-05 [10.1146/annurev-fluid-080316-121100] |
Recent Developments in the Fluid Dynamics of Tropical Cyclon...
2017-01-05 [10.1146/annurev-fluid-010816-060022] |
Home | MSDS/SDS Database Search | Journals | Product Classification | Biologically Active Compounds | Selling Leads | About Us | Disclaimer
Copyright © 2024 ChemSrc All Rights Reserved