The visuotopic structure of primary visual cortex was studied in a group of 7 human volunteers using positron emission transaxial tomography (PETT) and 18F-labeled 2-deoxy-2-fluoro-D-glucose ( [18F]DG). A computer animation was constructed with a spatial structure which was matched to estimates of human cortical magnification factor and to striate cortex stimulus preferences. A lateralized cortical 'checker-board' pattern of [18F]DG was stimulated in primary visual cortex by having subjects view this computer animation following i.v. injection of [18F]DG. The spatial structure of the stimulus was designed to produce an easily recognizable 'signature' in a series of 9 serial PETT scans obtained from each of a group of 7 volunteers. The predicted lateralized topographic 'signature' was observed in 6 of 7 subjects. Applications of this method for further PETT studies of human visual cortex are discussed.