前往化源商城

Biochemical Pharmacology 1991-08-22

Inhibition of cytosolic epoxide hydrolase by trans-3-phenylglycidols.

E C Dietze, E Kuwano, J Casas, B D Hammock

文献索引:Biochem. Pharmacol. 42(6) , 1163-75, (1991)

全文:HTML全文

摘要

The inhibition of murine cytosolic epoxide hydrolase has been studied with both racemic and enantiomerically pure trans-3-phenylglycidols. These compounds are the first enantioselective, slow binding inhibitors of cytosolic epoxide hydrolase. The (2S,3S)-3-phenylglycidol enantiomer was always a better inhibitor than the (2R,3R)-enantiomer. When the I50 values of (2S,3S)- and (2R,3R)-3-(4-nitrophenyl)glycidol were compared, the (2S,3S)-enantiomer was at least a 750-fold better inhibitor (I50 = 1.6 microM) than the (2R,3R)-enantiomer (I50 = 1200 microM), and it was the most potent inhibitor tested in the 3-phenylglycidol series. If the hydroxyl group of the glycidol was masked or converted to another functionality, the potency of the inhibitor decreased and the (2S,3S)-enantiomer was not necessarily the better inhibitor. In addition, trans-3-phenylglycidols demonstrated slow binding inhibition of cytosolic epoxide hydrolase. Inhibitors without a hydroxyl group, or with a blocked hydroxyl group, were not slow binding inhibitors. These results suggested that the hydroxyl group was important in both enantioselectivity and time dependence of inhibition of cytosolic epoxide hydrolase by trans-3-phenylglycidols. The hydration pattern of (2S,3S)- and (2R,3R)-2,3-epoxy-3-(4- nitrophenyl)glycidol by cytosolic epoxide hydrolase also differed. When incorporation of [18O] from water catalyzed by cytosolic epoxide hydrolase was measured, the (2S,3S)-enantiomer gave 12% incorporation into the benzylic carbon and the (2R,3R)-enantiometer gave 40% incorporation into the benzylic carbon. Finally, trans-3-phenylglycidols were found to be poor inhibitors of microsomal epoxide hydrolase.

相关化合物

结构式 名称/CAS号 全部文献
反式-1,3-二苯基-2,3-环氧丙-1-酮 结构式 反式-1,3-二苯基-2,3-环氧丙-1-酮
CAS:7570-86-7