前往化源商城

Biochemistry (Washington) 1998-12-08

Restoration of the activity of active-site mutants of the hyperthermophilic beta-glycosidase from Sulfolobus solfataricus: dependence of the mechanism on the action of external nucleophiles.

M Moracci, A Trincone, G Perugino, M Ciaramella, M Rossi

文献索引:Biochemistry 37(49) , 17262-70, (1998)

全文:HTML全文

摘要

The beta-glycosidase from the hyperthermophilic Archaeon Sulfolobus solfataricus hydrolyzes beta-glycosides following a retaining mechanism based upon the action of two amino acids: Glu387, which acts as the nucleophile of the reaction, and Glu206, which acts as the general acid/base catalyst. The activities of inactive mutants of the catalytic nucleophile Glu387Ala/Gly were restored by externally added nucleophiles. Sodium azide and sodium formate were used as external nucleophiles and the products of their reaction were characterized. Glu387Ala/Gly mutants were reactivated with 2, 4-DNP-beta-Glc substrate and the Glu387Gly mutant showed recovered activity, with the same nucleophiles, also on 2-NP-beta-Glc. The reaction catalyzed by the Glu387Gly mutant proceeded differently depending on the type of externally added nucleophile. Sodium azide restored the catalytic activity of the mutant by attacking the alpha-side of the anomeric carbon of the substrates, thereby yielding an inverting glycosidase. Sodium formate promoted the opposite behavior (retaining) in the mutant, producing 3-O-beta-linked disaccharide derivative of the substrates. A possible role of sodium formate as a biomimicking agent in replacing the natural nucleophile Glu387 is also discussed.

相关化合物

结构式 名称/CAS号 全部文献
邻硝基苯基-β-D-吡喃葡萄糖苷 结构式 邻硝基苯基-β-D-吡喃葡萄糖苷
CAS:2816-24-2