前往化源商城

Applied and Environmental Microbiology 2009-11-01

Biogenic formation of As-S nanotubes by diverse Shewanella strains.

Shenghua Jiang, Ji-Hoon Lee, Min-Gyu Kim, Nosang V Myung, James K Fredrickson, Michael J Sadowsky, Hor-Gil Hur

文献索引:Appl. Environ. Microbiol. 75(21) , 6896-9, (2009)

全文:HTML全文

摘要

Shewanella sp. strain HN-41 was previously shown to produce novel, photoactive, As-S nanotubes via the reduction of As(V) and S(2)O(3)(2-) under anaerobic conditions. To determine if this ability was unique to this bacterium, 10 different Shewanella strains, including Shewanella sp. strain HN-41, Shewanella sp. strain PV-4, Shewanella alga BrY, Shewanella amazonensis SB2B, Shewanella denitrificans OS217, Shewanella oneidensis MR-1, Shewanella putrefaciens CN-32, S. putrefaciens IR-1, S. putrefaciens SP200, and S. putrefaciens W3-6-1, were examined for production of As-S nanotubes under standardized conditions. Of the 10 strains examined, three formed As-S nanotubes like those of strain HN-41. While Shewanella sp. strain HN-41 and S. putrefaciens CN-32 rapidly formed As-S precipitates in 7 days, strains S. alga BrY and S. oneidensis MR-1 reduced As(V) at a much lower rate and formed yellow As-S after 30 days. Electron microscopy, energy-dispersive X-ray spectroscopy, and extended X-ray absorption fine-structure spectroscopy analyses showed that the morphological and chemical properties of As-S formed by strains S. putrefaciens CN-32, S. alga BrY, and S. oneidensis MR-1 were similar to those previously determined for Shewanella sp. strain HN-41 As-S nanotubes. These studies indicated that the formation of As-S nanotubes is widespread among Shewanella strains and is closely related to bacterial growth and the reduction rate of As(V) and thiosulfate.

相关化合物

结构式 名称/CAS号 全部文献
硫化砷(III) 结构式 硫化砷(III)
CAS:1303-33-9