前往化源商城

Nature Chemical Biology 2012-05-01

Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles.

Iana M Serafimova, Miles A Pufall, Shyam Krishnan, Katarzyna Duda, Michael S Cohen, Rebecca L Maglathlin, Jesse M McFarland, Rand M Miller, Morten Frödin, Jack Taunton

文献索引:Nat. Chem. Biol. 8 , 471-6, (2012)

全文:HTML全文

摘要

Targeting noncatalytic cysteine residues with irreversible acrylamide-based inhibitors is a powerful approach for enhancing pharmacological potency and selectivity. Nevertheless, concerns about off-target modification motivate the development of reversible cysteine-targeting strategies. Here we show that electron-deficient olefins, including acrylamides, can be tuned to react with cysteine thiols in a rapidly reversible manner. Installation of a nitrile group increased the olefins' intrinsic reactivity, but, paradoxically, eliminated the formation of irreversible adducts. Incorporation of these electrophiles into a noncovalent kinase-recognition scaffold produced slowly dissociating, covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. A cocrystal structure revealed specific noncovalent interactions that stabilize the complex by positioning the electrophilic carbon near the targeted cysteine. Disruption of these interactions by protein unfolding or proteolysis promoted instantaneous cleavage of the covalent bond. Our results establish a chemistry-based framework for engineering sustained covalent inhibition without accumulating permanently modified proteins and peptides.

相关化合物

结构式 名称/CAS号 全部文献
肉桂腈 结构式 肉桂腈
CAS:1885-38-7