前往化源商城

Biochimica et Biophysica Acta 2013-08-01

Cholesterol favors the emergence of a long-range autocorrelated fluctuation pattern in voltage-induced ionic currents through lipid bilayers.

Natalia A Corvalán, Jackelyn M Kembro, Pedro D Clop, María A Perillo

文献索引:Biochim. Biophys. Acta 1828(8) , 1754-64, (2013)

全文:HTML全文

摘要

The present paper was aimed at evaluating the effect of cholesterol (CHO) on the voltage-induced lipid pore formation in bilayer membranes through a global characterization of the temporal dynamics of the fluctuation pattern of ion currents. The bilayer model used was black lipid membranes (BLMs) of palmitoyloleoylphosphatidylethanolamine and palmitoyloleoylphosphatidylcholine (POPE:POPC) at a 7:3 molar ratio in the absence (BLM0) or in the presence of 30 (BLM30), 40 (BLM40) or 50(BLM50)mol% of cholesterol with respect to total phospholipids. Electrical current intensities (I) were measured in voltage (ΔV) clamped conditions at ΔV ranging between 0 and ±200mV. The autocorrelation parameter α derived from detrended fluctuation analysis (DFA) on temporal fluctuation patterns of electrical currents allowed discriminating between non-correlated (α=0.5, white noise) and long-range correlated (0.5<α<1) behaviors. The increase in |ΔV| as well as in cholesterol content increased the number of conductance states, the magnitude of conductance level, the capacitance of the bilayers and increased the tendency towards the development of long-range autocorrelated (fractal) processes (0.5<α<1) in lipid channel generation. Experiments were performed above the phase transition temperature of the lipid mixtures, but compositions used predicted a superlattice-like organization. This leads to the conclusion that structural defects other than phase coexistence may promote lipid channel formation under voltage clamped conditions. Furthermore, cholesterol controls the voltage threshold that allows the percolation of channel behavior where isolated channels become an interconnected network.Copyright © 2013 Elsevier B.V. All rights reserved.

相关化合物

结构式 名称/CAS号 全部文献
2-油酰-1-棕榈锡甘油-3-磷酸胆碱 结构式 2-油酰-1-棕榈锡甘油-3-磷酸胆碱
CAS:26853-31-6
酰基-2-油酰基1-棕榈酰-SN-甘油-3-磷酸乙醇胺 结构式 酰基-2-油酰基1-棕榈酰-SN-甘油-3-磷酸乙醇胺
CAS:26662-94-2