前往化源商城

Biochemistry (Washington) 1996-06-04

A mechanism for hydroxylation by tyrosine hydroxylase based on partitioning of substituted phenylalanines.

P J Hillas, P F Fitzpatrick

文献索引:Biochemistry 35 , 6969, (1996)

全文:HTML全文

摘要

The iron-containing enzyme tyrosine hydroxylase catalyzes the hydroxylation of tyrosine to dihydroxyphenylalanine. A series of 4-X-substituted (X = H, F, Br, Cl, CH3, or CH3O) phenylalanines have been characterized as substrates to gain insight into the mechanism of hydroxylation. Multiple hydroxylated products were formed in most cases. As the size of the substituent at the 4-position increased, the site of hydroxylation switched from the 4- to the 3-position of the aromatic ring. The total amount of product formed with each amino acid showed a very good correlation with the sigma parameter of the substituent, with rho values of -4.3 +/- 0.7 or -5.6 +/- 0.8 when tetrahydrobiopterin or 6-methyltetrahydropterin, respectively, was used as cosubstrate. These values are consistent with a highly electron deficient transition state for hydroxylation. Oxygen addition at the 4-position resulted in either elimination of the substituent to form tyrosine or an NIH shift to form the respective 3-X-tyrosine. The relative amount of the product due to an NIH shift decreased in the order Br > CH3 > Cl >> F approximately CH3O approximately 0. A chemical mechanism for hydroxylation by tyrosine hydroxylase is presented to account for product formation from the various 4-substituted phenylalanines.

相关化合物

结构式 名称/CAS号 全部文献
L-4-氟苯丙氨酸 结构式 L-4-氟苯丙氨酸
CAS:1132-68-9