前往化源商城

Journal of Biochemistry 1991-05-01

Intermediate and mechanism of hydroxylation of o-iodophenol by salicylate hydroxylase.

K Suzuki, T Gomi, E Itagaki

文献索引:J. Biochem. 109(5) , 791-7, (1991)

全文:HTML全文

摘要

Salicylate hydroxylase [EC 1.14.13.1] from Pseudomonas putida catalyzes the hydroxylation of salicylate, and also o-aminophenol, o-nitrophenol, and o-halogenophenols, to catechol. The reactions with these o-substituted phenols comprise oxygenative deamination, denitration, and dehalogenation, respectively. The reaction stoichiometry, as to NADH oxidized, oxygen consumed, and catechol formed, is 2 : 1 : 1, respectively. The mechanisms for the deiodination and oxygenation of o-iodophenol were investigated in detail by the use of I(+)-trapping reagents such as DL-methionine, 2-chlorodimedone, and L-tyrosine. The addition of the traps did not change the molar ratio of catechol formed to NADH oxidized, nor iodinated traps produced were in the incubation mixture. The results suggest that I+ was not produced on the deiodination in the hydroxylation of o-iodophenol. On the other hand, L-ascorbate, L-epinephrine, and phenylhydrazine increased the molar ratio. o-Phenylenediamine decreased it, being converted to phenazine. This suggests that o-benzoquinone is formed in the oxidation of o-iodophenol as a nascent product. The quinone was detected spectrophotometrically by means of the stopped-flow method. Kinetic analysis of the reactions revealed that o-benzoquinone is reduced nonenzymatically to catechol by a second molecule of NADH. A mechanism of elimination for the ortho-substituted groups of substrate phenols by the enzyme is proposed and discussed.

相关化合物

结构式 名称/CAS号 全部文献
2-碘苯酚 结构式 2-碘苯酚
CAS:533-58-4