前往化源商城

Physical Chemistry Chemical Physics 2013-04-14

The gas-phase reaction of methane sulfonic acid with the hydroxyl radical without and with water vapor.

Solvejg Jørgensen, Camilla Jensen, Henrik G Kjaergaard, Josep M Anglada

文献索引:Phys. Chem. Chem. Phys. 15(14) , 5140-50, (2013)

全文:HTML全文

摘要

The gas phase reaction between methane sulfonic acid (CH3SO3H; MSA) and the hydroxyl radical (HO), without and with a water molecule, was investigated with DFT-B3LYP and CCSD(T)-F12 methods. For the bare reaction we have found two reaction mechanisms, involving proton coupled electron transfer and hydrogen atom transfer processes that produce CH3SO3 and H2O. We also found a third reaction mechanism involving the double proton transfer process, where the products and reactants are identical. The computed rate constant for the oxidation process is 8.3 × 10(-15) cm(3) s(-1) molecule(-1). CH3SO3H forms two very stable complexes with water with computed binding energies of about 10 kcal mol(-1). The presence of a single water molecule makes the reaction between CH3SO3H and HO much more complex, introducing a new reaction that consists in the interchange of H2O between HO and CH3SO3H. Our kinetic calculations show that 99.5% of the reaction involves this interchange of the water molecule and, consequently, water vapor does not play any role in the oxidation reaction of methane sulfonic acid by the hydroxyl radical.

相关化合物

结构式 名称/CAS号 全部文献
甲基磺酸 结构式 甲基磺酸
CAS:75-75-2
甲基磺酸钠 结构式 甲基磺酸钠
CAS:2386-57-4
甲基磺酸钾 结构式 甲基磺酸钾
CAS:2386-56-3