前往化源商城

Journal of Pharmacology and Experimental Therapeutics 2014-09-01

Searching for combinations of small-molecule correctors to restore f508del-cystic fibrosis transmembrane conductance regulator function and processing.

Clément Boinot, Mathilde Jollivet Souchet, Romain Ferru-Clément, Frédéric Becq

文献索引:J. Pharmacol. Exp. Ther. 350(3) , 624-34, (2014)

全文:HTML全文

摘要

The mutated protein F508del-cystic fibrosis transmembrane conductance regulator (CFTR) failed to traffic properly as a result of its retention in the endoplasmic reticulum and functions as a chloride (Cl(-)) channel with abnormal gating and endocytosis. Small chemicals (called correctors) individually restore F508del-CFTR trafficking and Cl(-) transport function, but recent findings indicate that synergistic pharmacology should be considered to address CFTR defects more clearly. We studied the function and maturation of F508del-CFTR expressed in HeLa cells using a combination of five correctors [miglustat, IsoLAB (1,4-dideoxy-2-hydroxymethyl-1,4-imino-l-threitol), Corr4a (N-[2-(5-chloro-2-methoxy-phenylamino)-4'-methyl-[4,5']bithiazolyl-2'-yl]-benzamide), VX-809 [3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxol-5-yl)cyclopropanecarboxamido)-3-methylpyridin-2-yl)benzoic acid], and suberoylamilide hydroxamic acid (SAHA)]. Using the whole-cell patch-clamp technique, the current density recorded in response to CFTR activators (forskolin + genistein) was significantly increased in the presence of the following combinations: VX-809 + IsoLAB; VX-809 + miglustat + SAHA; VX-809 + miglustat + IsoLAB; VX-809 + IsoLAB + SAHA; VX-809 + miglustat + IsoLAB + SAHA. These combinations restored the activity of F508del-CFTR but with a differential effect on the appearance of mature c-band of F508del-CFTR proteins. Focusing on the VX-809 + IsoLAB cocktail, we recorded a level of correction higher at 37°C versus room temperature, but without amelioration of the thermal instability of CFTR. The level of functional rescue with VX-809 + IsoLAB after 4 hours of incubation was maximal and similar to that obtained in optimal conditions of use for each compound (i.e., 24 hours for VX-809 + 4 hours for IsoLAB). Finally, we compared the stimulation of F508del-CFTR by forskolin or forskolin + VX-770 [N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide] with cells corrected by VX-809 + IsoLAB. Our results open new perspectives for the development of a synergistic polypharmacology to rescue F508del-CFTR and show the importance of temperature on the effect of correctors and on the level of correction, suggesting that optimized combination of correctors could lead to a better rescue of F508del-CFTR function. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

相关化合物

结构式 名称/CAS号 全部文献
二甲基亚砜 结构式 二甲基亚砜
CAS:67-68-5
伏立诺他 结构式 伏立诺他
CAS:149647-78-9
4,4`-二异硫氰基-2,2`-芪二磺酸二钠水合物 结构式 4,4`-二异硫氰基-2,2`-芪二磺酸二钠水合物
CAS:207233-90-7
8-辛酰氧基芘-1,3,6-三磺酸三钠盐 结构式 8-辛酰氧基芘-1,3,6-三磺酸三钠盐
CAS:115787-84-3
麦格司他 结构式 麦格司他
CAS:72599-27-0