Ephraim Yavin, Yu Hong Lin, Annette Brand, Norman Salem
文献索引:Biochim. Biophys. Acta 1841(9) , 1336-44, (2014)
全文:HTML全文
Accumulation of polyunsaturated fatty acids (PUFA) in the fetal brain is accomplished predominantly via a highly selective flow of docosahexaenoic acid (22:6n-3, DHA) and arachidonic acid (20:4n-6, AA) through the placenta. Little is known regarding the endogenous capability of the fetus to generate its own DHA and AA from lower homologues such as linolenic (18:3n-3, ALA) and linoleic (18:2n-6, LA) acids, respectively. Deuterium-labeled d5-ALA and d5-LA at millimolar concentrations were injected directly into the amniotic fluid in order to investigate maternal-independent metabolic conversion of the stable isotopes in brain and liver of the fetus near delivery. After 48h under adequate maternal diet, the levels of d5-ALA metabolites in the fetal brain and fetal liver were 45±2.2 pmol/mg and 86±4 pmol/mg of which 79% and 63.6% were comprised of d5-DHA. At this time point, incorporation of d5-LA metabolites was 103±5 pmol/mg and 772±46 pmol/mg for brain and liver, of which 50% and 30% were comprised of d5-AA. Following sustained maternal dietary ALA deficiency, the levels of total d5-ALA derived metabolites in the fetal brain and fetal liver were increased to 231 pmol/mg and 696 pmol/mg of which 71% and 26% were comprised of d5-DHA. From the time course and relative rates of d5-ALA precursor displacement by d5-DHA in cellular phosphoglycerides, it is concluded that the fetal rat brain can generate its own DHA from its d5-ALA precursors particularly under dietary stress. Copyright © 2014 Elsevier B.V. All rights reserved.