前往化源商城

Journal of the American Chemical Society 2006-10-25

Lithium diisopropylamide-mediated ortholithiation and anionic fries rearrangement of aryl carbamates: role of aggregates and mixed aggregates.

Kanwal Jit Singh, David B Collum

文献索引:J. Am. Chem. Soc. 128(42) , 13753-60, (2006)

全文:HTML全文

摘要

Structural and mechanistic studies of the lithium diisopropylamide (LDA)-mediated anionic Fries rearrangements of aryl carbamates are described. Substituents at the meta position of the arene (H, OMe, F) and the dialkylamino moiety of the carbamate (Me(2)N, Et(2)N, and i-Pr(2)N) markedly influence the relative rates of ortholithiation and subsequent Fries rearrangement. Structural studies using (6)Li and (15)N NMR spectroscopies on samples derived from [(6)Li,(15)N]LDA reveal an LDA dimer, LDA dimer-arene complexes, an aryllithium monomer, LDA-aryllithium mixed dimers, an LDA-lithium phenolate mixed dimer, and homoaggregated lithium phenolates. The highly insoluble phenolate was characterized as a dimer by X-ray crystallography. Rate studies show monomer- and dimer-based ortholithiations as well as monomer- and mixed dimer-based Fries rearrangements. Density functional theory computational studies probe experimentally elusive structural and mechanistic details.

相关化合物

结构式 名称/CAS号 全部文献
二异丙胺 结构式 二异丙胺
CAS:108-18-9
二异丙胺基锂 结构式 二异丙胺基锂
CAS:4111-54-0