前往化源商城

Journal of Hazardous Materials 2015-04-09

Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15.

Qiangqiang Sun, Yu Wang, Laisheng Li, Jishuai Bing, Yingxin Wang, Huihua Yan

文献索引:J. Hazard. Mater. 286 , 276-84, (2015)

全文:HTML全文

摘要

Comparative experiments were conducted to investigate the catalytic ability of MnO(x)/SBA-15 for the ozonation of clofibric acid (CA) and its reaction mechanism. Compared with ozonation alone, the degradation of CA was barely enhanced, while the removal of TOC was significantly improved by catalytic ozonation (O3/MnO(x)/SBA-15). Adsorption of CA and its intermediates by MnO(x)/SBA-15 was proved unimportant in O3/MnO(x)/SBA-15 due to the insignificant adsorption of CA and little TOC variation after ceasing ozone in stopped-flow experiment. The more remarkably inhibition effect of sodium bisulfite (NaHSO3) on the removal of TOC in catalytic ozonation than in ozonation alone elucidated that MnO(x)/SBA-15 facilitated the generation of hydroxyl radicals (OH), which was further verified by electron spin-resonance spectroscopy (ESR). Highly dispersed MnO(x) on SBA-15 were believed to be the main active component in MnO(x)/SBA-15. Some intermediates were indentified and different degradation routes of CA were proposed in both ozonation alone and catalytic ozonation. The amounts of small molecular carboxylic acids (i.e., formic acid (FA), acetic acid (AA) and oxalic acid (OA)) generated in catalytic ozonation were lower than in ozonation alone, resulting from the generation of more OH.Copyright © 2014 Elsevier B.V. All rights reserved.

相关化合物

结构式 名称/CAS号 全部文献
乙腈 结构式 乙腈
CAS:75-05-8
甲醇 结构式 甲醇
CAS:67-56-1
乙酸锰,四水 结构式 乙酸锰,四水
CAS:6156-78-1
锰 结构式
CAS:7439-96-5
2-(4-氯苯氧基)异丁酸 结构式 2-(4-氯苯氧基)异丁酸
CAS:882-09-7