We previously developed linear polymers bearing clustered trisaccharides of globotriaosylceramide (Gb3) as orally applicable Shiga toxin (Stx) neutralizers. Here, using a Gb3 polymer with a short spacer tethering the trisaccharide to the core, we found that shortening the spacer length markedly reduced the binding affinity for Stx2 but not Stx1. Moreover, mutational analysis revealed that the essential binding sites of the terminal trisaccharides were completely different between Stx1 and Stx2. These results provide the molecular basis for the interaction between Stx B subunits and Gb3 polymers.