前往化源商城

Journal of Biomedical Nanotechnology 2013-04-01

Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering.

Aja Aravamudhan, Daisy M Ramos, Jonathan Nip, Matthew D Harmon, Roshan James, Meng Deng, Cato T Laurencin, Xiaojun Yu, Sangamesh G Kumbar

文献索引:J. Biomed. Nanotechnol. 9(4) , 719-31, (2013)

全文:HTML全文

摘要

Scaffold based bone tissue engineering (BTE) has made great progress in regenerating lost bone tissue. Materials of natural and synthetic origin have been used for scaffold fabrication. Scaffolds derived from natural polymers offer greater bioactivity and biocompatibility with mammalian tissues to favor tissue healing, due to their similarity to native extracellular matrix (ECM) components. Often it is a challenge to fabricate natural polymer based scaffolds for BTE applications without compromising their bioactivity, while maintaining adequate mechanical properties. In this work, we report the fabrication and characterization of cellulose and collagen based micro-nano structured scaffolds using human osteoblasts (HOB) for BTE applications. These porous micro-nano structured scaffolds (average pore diameter 190 +/- 10 microm) exhibited mechanical properties in the mid range of human trabecular bone (compressive modulus 266.75 +/- 33.22 MPa and strength 12.15 3 +/- 2.23 MPa). These scaffolds supported the greater adhesion and phenotype maintenance of cultured HOB as reflected by higher levels of osteogenic enzyme alkaline phosphatase and mineral deposition compared to control polyester micro-nano structured scaffolds of identical pore properties. These natural polymer based micro-nano structured scaffolds may serve as alternatives to polyester based scaffolds for BTE applications.

相关化合物

结构式 名称/CAS号 全部文献
乙基纤维素 结构式 乙基纤维素
CAS:9004-57-3
碱性磷酸酶 结构式 碱性磷酸酶
CAS:9001-78-9
微晶纤维素 结构式 微晶纤维素
CAS:9004-34-6