前往化源商城

Small 2015-02-11

Microfluidic gradients reveal enhanced neurite outgrowth but impaired guidance within 3D matrices with high integrin ligand densities.

Nicole H Romano, Kyle J Lampe, Hui Xu, Meghaan M Ferreira, Sarah C Heilshorn

文献索引:Small 11(6) , 722-30, (2015)

全文:HTML全文

摘要

The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. A platform is presented here that combines gradient-generating microfluidic devices with 3D protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known trade-off between adhesive forces at the leading and trailing edges of a migrating cell, implying that a similar matrix-mediated balance of forces regulates neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

相关化合物

结构式 名称/CAS号 全部文献
叠氮化钠 结构式 叠氮化钠
CAS:26628-22-8
氯化钠 结构式 氯化钠
CAS:7647-14-5
异丙基-β-D-硫代半乳糖苷(IPTG) 结构式 异丙基-β-D-硫代半乳糖苷(IPTG)
CAS:367-93-1
氯化钠-35cl 结构式 氯化钠-35cl
CAS:20510-55-8
苄磺酰氟 结构式 苄磺酰氟
CAS:329-98-6
乙二胺四乙酸 结构式 乙二胺四乙酸
CAS:60-00-4
盐酸米安色林 结构式 盐酸米安色林
CAS:21535-47-7
钙黄绿素 结构式 钙黄绿素
CAS:154071-48-4