前往化源商城

Journal Of Cellular Physiology 2015-11-01

The Role of Maternal Gestational Diabetes in Inducing Fetal Endothelial Dysfunction.

Samar A Sultan, Wanting Liu, Yonghong Peng, W Roberts, Donald Whitelaw, Anne M Graham

文献索引:J. Cell Physiol. 230 , 2695-705, (2015)

全文:HTML全文

摘要

Gestational diabetes mellitus (GDM) is known to be associated with fetal endothelial dysfunction, however, the mechanisms are not fully understood. This study examines the effect of maternal diabetes on fetal endothelial function and gene expression under physiological glucose conditions (5 mM). Human umbilical vein endothelial cell (HUVEC) isolated from diabetic mothers (d.HUVEC) grew more slowly than HUVEC isolated from healthy mothers (c.HUVEC) and had delayed doubling time despite increased levels of total vascular endothelial growth factor (VEGF) expression and protein production as determined by real-time PCR and ELISA respectively. Using western blot, the levels of antiproliferative VEGF165b isoform were increased in d.HUVEC relative to c.HUVEC. Successful VEGF165b knockdown by small interfering RNA (siRNA) resulted in increased proliferation of d.HUVEC measured by MTT, compared with negative siRNA control, to similar levels measured in c.HUVEC. In addition, d.HUVEC generated excess levels of ROS as revealed by 2',7' Dichlorodihydrofluorescein Diacetate (DCFH-DA) and Nitrotetrazolium blue (NBT). Using microarray, 102 genes were differentially overexpressed between d.HUVEC versus c.HUVEC (>1.5-fold change; P < 0.05). Functional clustering analysis of these differentially expressed genes revealed participation in inflammatory responses (including adhesion) which may be related to pathological outcomes. Of these genes, ICAM-1 was validated as upregulated, confirming microarray results. Additional confirmatory immunofluorescence staining revealed increased protein expression of ICAM-1 compared with c.HUVEC which was reduced by vitamin C treatment (100 μM). Thus, maternal diabetes induces persistent alterations in fetal endothelial function and gene expression following glucose normalization and antioxidant treatment could help reverse endothelium dysfunction.© 2015 Wiley Periodicals, Inc.

相关化合物

结构式 名称/CAS号 全部文献
叠氮化钠 结构式 叠氮化钠
CAS:26628-22-8
DL-丝氨酸 结构式 DL-丝氨酸
CAS:302-84-1
DL-甘油醛 结构式 DL-甘油醛
CAS:56-82-6
苄磺酰氟 结构式 苄磺酰氟
CAS:329-98-6
4',6-二脒基-2-苯基吲哚二盐酸盐 结构式 4',6-二脒基-2-苯基吲哚二盐酸盐
CAS:28718-90-3
N-[1-(2,3-二油酰氧基)丙基]-N,N,N-三甲基铵甲基-硫酸盐 结构式 N-[1-(2,3-二油酰氧基)丙基]-N,N,N-三甲基铵甲基-硫酸盐
CAS:144189-73-1