Potentiometric determination of trace amounts of aluminium utilizing polyvinyl chloride membrane and coated platinum sensors based on E-N'-(2-hydroxy-3-methoxybenzylidene) benzohydrazide.
Somayeh Tajik, Mohammad Ali Taher, Iran Sheikhshoaie
This paper describes the construction and performance characteristics of novel polyvinyl chloride membrane (PME) and coated platinum (CPtE) aluminium (Al) ion selective electrodes based on E-N'-(2-hydroxy-3-methoxybenzylidene) benzohydrazide. The electrodes exhibited linear responses with near Nernstian slopes of 19.9 +/- 0.3 (PME) and 20.1 +/- 0.4 (CPtE) mV/decade of activity within the Al3+ ion concentration range of 3.0 x 10(-7) to 1.0 x 10(-2) M for the PME and 1.0 x 10(-7)-1.0 x 10(-2) M for the CPtE. These sensors were applicable in a pH range of 3.0 to 7.0. The LODs of the PME and CPtE were 1.7 x 10(-7) and 5.6 x 10(-8) M, respectively. They had a response time of less than 10 s and could be used practically for a period of at least 2 months without measurable divergence in results. The isothermal temperature coefficient of the PME was 1.12 x 10(-3) V/degrees C, and it can tolerate partially nonaqueous media up to 25%. The electrodes showed excellent selectivity towards Al3+ ions in the presence of a wide range of alkali, alkaline earth, and transition metals ions. They were successfully applied for the direct determination of Al3+ ions in tap water, aqueduct water, mineral water, and Al-Mg syrup and as indicator electrodes in potentiometric titration of Al ions with EDTA.