前往化源商城

Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2014-08-01

Critical role of cellular glutathione homeostasis for trivalent inorganic arsenite-induced oxidative damage in human bronchial epithelial cells

Xuejun Jiang, Chengzhi Chen, Yuan Liu, Ping Zhang, ZunZhen Zhang

文献索引:Mutat. Res. Genet. Toxicol. Environ. Mutagen. 770 , 35-45, (2014)

全文:HTML全文

摘要

Trivalent inorganic arsenic (iAs(3+)) is a powerful carcinogen that enhances the risk of lung cancer. Paradoxically, iAs(3+) also shows substantial efficacy in the treatment of lung tumors. However, the exact molecular mechanisms underlying iAs(3+)-induced toxicity and therapeutic effect in lung remain unclear. In this study, the effects of iAs(3+), sodium arsenite (NaAsO2) and arsenic trioxide (As2O3), on cell viability, apoptosis, genotoxicity and oxidative stress in cultured human bronchial epithelial cells were observed. Our results showed that NaAsO2 and As2O3 exposure could result in defects in cell proliferation and greatly enhance the level of oxidative damage. To clarify the critical role of glutathione (GSH) homeostasis in oxidative damage induced by iAs(3+), we further measured the content of GSH, ratio of GSH to GSSG, and the activities of GSH-related enzymes involved in the process of GSH synthesis, recycling and utilization. Our data demonstrated that NaAsO2 and As2O3 disrupted the balance of GSH homeostasis, and NaAsO2- and As2O3-induced oxidative damage was closely associated with the imbalance in GSH synthesis, recycling and utilization. To better understand the physiologic significance of Nrf2 in maintaining GSH-homeostasis, the expression level of Nrf2 was measured after iAs(3+) exposure. We found that the protein expression levels of Nrf2 were increased in both NaAsO2- and As2O3-treated cells. Collectively, our findings suggest that disturbed Nrf2-regulated GSH-homeostasis is associated with the oxidative damage triggered by iAs(3+), and loss of GSH homeostasis might implicate in both the pathogenesis of iAs(3+)-induced lung diseases and anticancer activity of iAs(3+). Copyright © 2014 Elsevier B.V. All rights reserved.

相关化合物

结构式 名称/CAS号 全部文献
溴化乙啶 结构式 溴化乙啶
CAS:1239-45-8
吖啶橙 结构式 吖啶橙
CAS:65-61-2
谷胱甘肽/5-L-谷氨酰-L-半胱氨酰甘氨酸 结构式 谷胱甘肽/5-L-谷氨酰-L-半胱氨酰甘氨酸
CAS:70-18-8
L-氧化型谷胱甘肽 二钠盐 结构式 L-氧化型谷胱甘肽 二钠盐
CAS:103239-24-3