前往化源商城

Biochimica et Biophysica Acta 2015-02-01

H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation.

Andrey V Kuznetsov, Sabzali Javadov, Stephan Sickinger, Sandra Frotschnig, Michael Grimm

文献索引:Biochim. Biophys. Acta 1853(2) , 276-84, (2015)

全文:HTML全文

摘要

Dysfunction of cardiac energy metabolism plays a critical role in many cardiac diseases, including heart failure, myocardial infarction and ischemia-reperfusion injury and organ transplantation. The characteristics of these diseases can be elucidated in vivo, though animal-free in vitro experiments, with primary adult or neonatal cardiomyocytes, the rat ventricular H9c2 cell line or the mouse atrial HL-1 cells, providing intriguing experimental alternatives. Currently, it is not clear how H9c2 and HL-1 cells mimic the responses of primary cardiomyocytes to hypoxia and oxidative stress. In the present study, we show that H9c2 cells are more similar to primary cardiomyocytes than HL-1 cells with regard to energy metabolism patterns, such as cellular ATP levels, bioenergetics, metabolism, function and morphology of mitochondria. In contrast to HL-1, H9c2 cells possess beta-tubulin II, a mitochondrial isoform of tubulin that plays an important role in mitochondrial function and regulation. We demonstrate that H9c2 cells are significantly more sensitive to hypoxia-reoxygenation injury in terms of loss of cell viability and mitochondrial respiration, whereas HL-1 cells were more resistant to hypoxia as evidenced by their relative stability. In comparison to HL-1 cells, H9c2 cells exhibit a higher phosphorylation (activation) state of AMP-activated protein kinase, but lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha levels, suggesting that each cell type is characterized by distinct regulation of mitochondrial biogenesis. Our results provide evidence that H9c2 cardiomyoblasts are more energetically similar to primary cardiomyocytes than are atrial HL-1 cells. H9c2 cells can be successfully used as an in vitro model to simulate cardiac ischemia-reperfusion injury. Copyright © 2014 Elsevier B.V. All rights reserved.

相关化合物

结构式 名称/CAS号 全部文献
氟化钠 结构式 氟化钠
CAS:7681-49-4
叠氮化钠 结构式 叠氮化钠
CAS:26628-22-8
氯化钠 结构式 氯化钠
CAS:7647-14-5
十二烷基硫酸钠 结构式 十二烷基硫酸钠
CAS:151-21-3
去氧胆酸钠 结构式 去氧胆酸钠
CAS:302-95-4
氯化钠-35cl 结构式 氯化钠-35cl
CAS:20510-55-8
苄磺酰氟 结构式 苄磺酰氟
CAS:329-98-6
4-叔辛基苯酚单氧化物 结构式 4-叔辛基苯酚单氧化物
CAS:2315-67-5
三(叔丁氧基)硅烷醇 结构式 三(叔丁氧基)硅烷醇
CAS:18166-43-3
磷酸三钠 结构式 磷酸三钠
CAS:7601-54-9