Ziyi He, Wanling Zhang, Sifeng Mao, Nan Li, Haifang Li, Jin-Ming Lin
文献索引:10.1021/acs.analchem.8b00755
全文:HTML全文
Shear stress is an important mechanical stimulus that plays a critical role in modulating cell functions. In this study, we investigated the regulating effects of shear stress on the internalization of cell membrane proteins in a microfluidic chip. A hairpin-type DNA probe was developed and indiscriminately anchored to the cell surface, acting as an indicator for the membrane proteins. When cells were exposed to shear stress generated from fluid cell medium containing external proteins, strong fluorescence was emanated from intracellular regions. With intensive investigation, results revealed that shear stress could enhance the specific cell endocytosis pathway and promote membrane protein internalization. This process was indicated by the enhanced intracellular fluorescence, generated from the internalized and mitochondria accumulated DNA probes. This study not only uncovered new cellular mechanotransduction mechanisms but also provided a versatile method that enabled in situ and dynamic indication of cell responses to mechanical stimuli.
|
Large-Scale Differentiation and Site Specific Discrimination...
2018-04-20 [10.1021/acs.analchem.8b00413] |
|
Spatial-Resolution Cell Type Proteome Profiling of Cancer Ti...
2018-04-18 [10.1021/acs.analchem.8b00596] |
|
Determination of Osmium Concentration and Isotope Compositio...
2018-04-18 [10.1021/acs.analchem.8b00150] |
|
MoFi: A Software Tool for Annotating Glycoprotein Mass Spect...
2018-04-18 [10.1021/acs.analchem.8b00019] |
|
Determination of Collision Cross-Sections of Protein Ions in...
2018-04-18 [10.1021/acs.analchem.8b00724] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved