Ting Shi, Lanxuan Liu, Wentao Tao, Shenggan Luo, Shuobing Fan, Xiao-Lei Wang, Linquan Bai, Yi-Lei Zhao
文献索引:10.1021/acscatal.8b01156
全文:HTML全文
Polyketide synthases (PKSs) share a subset of biosynthetic steps in construction of a polyketide, and the offload from the PKS main module of specific product release is most often catalyzed by a thioesterase (TE). In spite of the fact that various PKS systems have been discovered in polyketide biosynthesis, the molecular basis of TE-catalyzed macrocyclization remains challenging. In this study, MD simulations and QM/MM methods were combined to investigate the catalytic mechanism and substrate diversity of pikromycin (PIK) TE with two systems (PIK-TE-1 and PIK-TE-2), where substrates 1 and 2 correspond to TE-catalyzed precursors of 10-deoxymethynolide and narbonolide, respectively. The results showed that, in comparison with PIK-TE-2, system PIK-TE-1 exhibited a greater tendency to form a stable prereaction state, which is critical to macrocyclization. In addition, the structural characteristics of prereaction states were uncovered through analyses of hydrogen-bonding and hydrophobic interactions, which were found to play a key role in substrate recognition and product release. Furthermore, potential energy surfaces were calculated to study the molecular mechanism of macrocyclization, including the formation of tetrahedral intermediates from si- and re-face nucleophilic attacks and the release of products. The energy barrier of macrocyclization from si-face attack was calculated to be 16.3 kcal/mol in PIK-TE-1, 3.6 kcal/mol lower than that from re-face attack and 4.1 kcal/mol lower than that from si-face attack in PIK-TE-2. These results are in agreement with experimental observations that the yield of 10-deoxymethynolide is superior to that of narbonolide in PIK TE catalyzed macrocyclization. Our findings elucidate the catalytic mechanism of PIK TE and provide a better understanding of type I PKS TEs in protein engineering.
|
Iron-Catalyzed Direct Olefin Diazidation via Peroxyester Act...
2018-04-19 [10.1021/acscatal.8b00821] |
|
Catalytic Dehydrogenation of (Di)Amine-Boranes with a Geomet...
2018-04-18 [10.1021/acscatal.8b00152] |
|
Well-Defined β-Diketiminatocobalt(II) Complexes for Alkene C...
2018-04-18 [10.1021/acscatal.8b00631] |
|
Isoprene Regioblock Copolymerization: Switching the Regiosel...
2018-04-18 [10.1021/acscatal.8b00600] |
|
Low-Energy Electrocatalytic CO2 Reduction in Water over Mn-C...
2018-04-18 [10.1021/acscatal.8b01068] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2026 ChemSrc All Rights Reserved