Andrey Kistanov, Yongqing Cai, Kun Zhou, Sergey Dmitriev, Yong-Wei Zhang
文献索引:10.1039/C8CP01146J
全文:HTML全文
By using first-principles calculations, we investigated the effects of graphene/boron nitride (BN) encapsulation, surface functionalization by metallic elements (K, Al, Mg and typical transition metals) and molecules (tetracyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE)) on the electronic properties of layered indium selenide (InSe). It was found that an opposite trend of charge transfer is possible for graphene (donor) and BN (acceptor), which is dramatically different from phosphorene where both graphene and BN play the same role (donor). For InSe/BN heterostructure, a change of the interlayer distance due to an out-of-plane compression can effectively modulate the band gap. Strong acceptor abilities to InSe were found for the TCNE and TCNQ molecules. For K, Al and Mg-doped monolayer InSe, the charge transfer from K and Al atoms to the InSe surface was observed, causing an n-type conduction of InSe, while p-type conduction of InSe observed in case of the Mg-doping. The atomically thin structure of InSe enables the possible observation and utilization of the dopant-induced vertical electric field across the interface. A proper adoption of the n- or p-type dopants allows for the modulation of the work function, the Fermi level pinning, the band bending, and the photo-adsorbing efficiency near the InSe surface/interface. Investigation on the adsorption of transition metal atoms on InSe showed that Ti-, V-, Cr-, Mn-, Co-adsorbed InSe are spin-polarized, while Ni-, Cu-, Pd-, Ag- and Au-adsorbed InSe are non-spin-polarized. Our results shed lights on the possible ways to protect InSe structure and modulate its electronic properties for nanoelectronics and electrochemical device applications.
Nanoscale thermal diffusion during the laser interference ab...
2018-04-13 [10.1039/C7CP08458G] |
Asymmetric Twins in Boron Very Rich Boron Carbide
2018-04-13 [10.1039/C8CP01429A] |
Observation of short range order driven large refrigerant ca...
2018-04-13 [10.1039/C8CP01280F] |
Computational Screening of Single Transition Metal Atom Supp...
2018-04-13 [10.1039/C8CP01215F] |
Phenyl Radical + Propene: A Prototypical Reaction Surface fo...
2018-04-13 [10.1039/C8CP01159A] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved