Trent P. Vorlicek, George R. Helz, Anthony Chappaz, Pakou Vue, Austin Vezina, Wayland Hunter
文献索引:10.1021/acsearthspacechem.8b00016
全文:HTML全文
Relative to continental crust, sediments underlying sulfidic marine waters are molybdenum-rich, a property preserved in the rock record and useful for characterizing paleoenvironments. The enrichment mechanism is not agreed upon but is attributed at least partly to deposition of Fe–Mo–S compounds, which are as yet uncharacterized. Here, we determine the composition and stability of colloidal Fe–Mo–S precipitates formed at mildly basic pH and H2S(aq) > 10–5 M. The first product consists simply of FeMoS4, with Ksp = 10–14.95. Within hours, FeMoS4 irreversibly transforms by internal self-reduction to a Mo(IV) product of similar composition. The reduced product is insoluble in 1 M HCl but soluble in concentrated HNO3, implying that it would be recovered with pyrite in a common assay of sediments. X-ray absorption fine structure data show that Mo(IV) in the colloids is coordinated by a split first shell of about five sulfur atoms at average distances of 2.31 and 2.46 Å and in its second shell by an iron atom at about 2.80 Å. These properties resemble those determined for Mo in modern anoxic lake sediments and in Phanerozoic black shales. The atomic environment around Mo suggests that the colloidal products may be inorganic polymers containing cuboid, Fe2Mo2S44+ cores. Such materials are so far unreported by mineralogists, although a rare mineral, jordisite, may be a related, but more Mo-rich material. The low solubility of FeMoS4 makes it a feasible precipitate in euxinic waters like those in the modern Black Sea. We propose that colloids similar to those studied here could account for Mo-enrichment in euxinic basin sediments and black shales.
Direct Measurement of Elemental Mercury using Multi-Dimensio...
2018-04-13 [10.1021/acsearthspacechem.8b00008] |
Hydrothermal Decomposition of Amino Acids and Origins of Pre...
2018-04-11 [10.1021/acsearthspacechem.8b00025] |
The Transformation of Two-Line Ferrihydrite into Crystalline...
2018-04-05 [10.1021/acsearthspacechem.8b00001] |
Sorption of Pb(II) by Nanosized Ferrihydrite Organo-Mineral ...
2018-03-30 [10.1021/acsearthspacechem.8b00005] |
NeON+: An Atom and a Molecule
2018-03-29 [10.1021/acsearthspacechem.8b00019] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved