Meijuan Liang; Min Pan; Jialing Hu; Fuan Wang; Xiaoqing Liu
文献索引:10.1002/celc.201800255
全文:HTML全文
The development of effective strategies for sensitive and specific detection of microRNAs will facilitate clinical diagnostics. Here, we utilize cascade hybridization chain reaction as an enzyme‐free isothermal amplified strategy, and construct label‐free electrochemical biosensors for microRNAassay. MicroRNA initiated autonomous assembly of DNA nanostructures through the toehold‐mediated strand displacement reaction. The assembly behavior was examined by gel electrophoresis and morphology of branched DNA nanostructure was verified by atomic force microscope. This cascade hybridization chain reaction leads to extended growth of DNA chains and higher amplification efficiency compared with the regular hybridization chain reaction. The performance of the sensors was characterized by electrochemical impedance spectroscopy, differential pulse voltammetry, and chronocoulometric analysis. The prepared biosensor exhibits high sensitivity and a lower detection limit of 11 pM for the determination of microRNA‐21. This electrochemical assay based on cascade hybridization chain reaction is specific and can distinguish between highly homologous targets such as fully complementary target microRNA‐21, single, or two‐base mismatched sequences and other family members. These findings open the possibility of using cascade hybridization chain reaction as possible amplified electrochemical sensing platforms.
Hierarchical MnO2 Located on Carbon Nanotubes for Enhanced E...
2018-04-17 [10.1002/celc.201701110] |
Artificial Interface Derived from Diphenyl Ether Additive fo...
2018-04-16 [10.1002/celc.201800011] |
Hydrogen Bonding Effects on the Reversible Reorganization of...
2018-04-14 [10.1002/celc.201800148] |
In situ Synthesis of V2O3‐Intercalated N‐doped Graphene Nano...
2018-04-06 [10.1002/celc.201800213] |
Redox‐Active Copper‐Benzotriazole Stacked Multiwalled Carbon...
2018-04-06 [10.1002/celc.201800110] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved