Rong Ma, Zhiyong Ren, Qingfu Tang, Dong Chen, Tingyi Liu, Bin Su, Zhenhong Wang, Chao Luo
文献索引:10.1016/j.jnucmat.2018.02.002
全文:HTML全文
The microstructures and micro-mechanical properties of the melt-spun ribbons of U-5.4 wt%Nb alloy were characterized using optical microscopy, scanning electron microscopy, X-ray diffraction and nanoindentation. Observed variations in microstructures and properties are related to the changes in ribbon thicknesses and cooling rates. The microstructures of the melt-spun ribbon consist of fine-scale columnar grains (∼1 μm) adjacent to the chill surface and coarse cellular grains in the remainder of the ribbon. In addition, the formation of inclusions in the ribbon is suppressed kinetically due to the high cooling rate during melt spinning. Compared with the water-quenched specimen prepared by traditional gravity casting and solution heat treatment, the elastic modulus values of the U-5.4 wt%Nb alloy were examined to vary with grain size and exhibited diverse energy dissipation capacities.
Ion irradiation induced nucleation and growth of nanoparticl...
2018-04-04 [10.1016/j.jnucmat.2018.04.005] |
Experimental studies on eutectic formation between metallic ...
2018-04-03 [10.1016/j.jnucmat.2018.04.003] |
Correction to APT chemical composition measurements in ODS s...
2018-04-03 [10.1016/j.jnucmat.2018.03.057] |
Young's modulus evaluation of high burnup structure in UO2 w...
2018-04-03 [10.1016/j.jnucmat.2018.04.004] |
Immobilization of iodine via copper iodide
2018-04-03 [10.1016/j.jnucmat.2018.04.002] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved