Guangyu Zhao, Xin Sun, Li Zhang, Xuan Chen, Yachun Mao, Kening Sun
文献索引:10.1016/j.jpowsour.2018.04.001
全文:HTML全文
Derivates of metal-organic frameworks are promising materials of self-supported Li ion battery anodes due to the good dispersion of active materials, conductive scaffold, and mass transport channels in them. However, the discontinuous growth and poor adherence of metal-organic framework films on substrates hamper their development in self-supported electrodes. In the present study, cobalt-based metal-organic frameworks are anchored on Ti nanowire arrays through an electrochemically assistant method, and then the metal-organic framework films are pyrolyzed to carbon-containing, porous, self-supported anodes of Li ion battery anodes. Scanning electron microscope images indicate that, a layer cobaltosic oxide polyhedrons inserted by the nanowires are obtained with the controllable in-situ synthesis. Thanks to the good dispersion and adherence of cobaltosic oxide polyhedrons on Ti substrates, the self-supported anodes exhibit remarkable rate capability and durability. They possess a capacity of 300 mAh g−1 at a rate current of 20 A g−1, and maintain 2000 charge/discharge cycles without obvious decay.
A novel differential electrochemical mass spectrometry metho...
2018-04-07 [10.1016/j.jpowsour.2018.04.002] |
Liquid water breakthrough location distances on a gas diffus...
2018-04-07 [10.1016/j.jpowsour.2018.04.004] |
Sliding mode observer for proton exchange membrane fuel cell...
2018-04-06 [10.1016/j.jpowsour.2018.03.057] |
Na1.25Ni1.25Fe1.75(PO4)3 nanoparticles as a janus electrode ...
2018-04-02 [10.1016/j.jpowsour.2018.03.069] |
Surface-protected LiCoO2 with ultrathin solid oxide electrol...
2018-04-02 [10.1016/j.jpowsour.2018.03.076] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved