Ching-Hua Wang, Jean Anne C. Incorvia, Connor J. McClellan, Andrew C. Yu, Michal J. Mleczko, Eric Pop, H.-S. Philip Wong
文献索引:10.1021/acs.nanolett.7b05192
全文:HTML全文
Black phosphorus (BP) is a promising two-dimensional (2D) material for nanoscale transistors, due to its expected higher mobility than other 2D semiconductors. While most studies have reported ambipolar BP with a stronger p-type transport, it is important to fabricate both unipolar p- and n-type transistors for low-power digital circuits. Here, we report unipolar n-type BP transistors with low work function Sc and Er contacts, demonstrating a record high n-type current of 200 μA/μm in 6.5 nm thick BP. Intriguingly, the electrical transport of the as-fabricated, capped devices changes from ambipolar to n-type unipolar behavior after a month at room temperature. Transmission electron microscopy analysis of the contact cross-section reveals an intermixing layer consisting of partly oxidized metal at the interface. This intermixing layer results in a low n-type Schottky barrier between Sc and BP, leading to the unipolar behavior of the BP transistor. This unipolar transport with a suppressed p-type current is favorable for digital logic circuits to ensure a lower off-power consumption.
Catalytic Nanotruss Structures Realized by Magnetic Self-Ass...
2018-04-16 [10.1021/acs.nanolett.8b00718] |
Plasmonic Glasses and Films Based on Alternative Inexpensive...
2018-04-16 [10.1021/acs.nanolett.8b00764] |
Direct Visualization of Thermal Conductivity Suppression Due...
2018-04-13 [10.1021/acs.nanolett.8b00534] |
Electrical Transport Signature of the Magnetic Fluctuation-S...
2018-04-12 [10.1021/acs.nanolett.8b00926] |
Observation of Quasi-Two-Dimensional Polar Domains and Ferro...
2018-04-12 [10.1021/acs.nanolett.8b00633] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved