Alexey Tikan, Cyril Billet, Gennady El, Alexander Tovbis, Marco Bertola, Thibaut Sylvestre, Francois Gustave, Stephane Randoux, Goëry Genty, Pierre Suret, and John M. Dudley
文献索引:10.1103/PhysRevLett.119.033901
全文:HTML全文
We report experimental confirmation of the universal emergence of the Peregrine soliton predicted to occur during pulse propagation in the semiclassical limit of the focusing nonlinear Schrödinger equation. Using an optical fiber based system, measurements of temporal focusing of high power pulses reveal both intensity and phase signatures of the Peregrine soliton during the initial nonlinear evolution stage. Experimental and numerical results are in very good agreement, and show that the universal mechanism that yields the Peregrine soliton structure is highly robust and can be observed over a broad range of parameters.
Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid...
2017-07-19 [10.1103/PhysRevLett.119.038101] |
Nonuniform Currents and Spins of Relativistic Electron Vorti...
2017-07-18 [10.1103/PhysRevLett.119.030401] |
Neural Decoder for Topological Codes
2017-07-18 [10.1103/PhysRevLett.119.030501] |
Constraining Relativistic Generalizations of Modified Newton...
2017-07-18 [10.1103/PhysRevLett.119.031102] |
Natural Covariant Planck Scale Cutoffs and the Cosmic Microw...
2017-07-18 [10.1103/PhysRevLett.119.031301] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2024 ChemSrc All Rights Reserved