Bao-quan Ai
文献索引:10.1103/PhysRevE.96.012131
全文:HTML全文
Diffusion and rectification of Brownian particles powered by a rotating wheel are numerically investigated in a two-dimensional channel. The nonequilibrium driving comes from the rotating wheel, which can break thermodynamical equilibrium and induce the directed transport in an asymmetric potential. It is found that the direction of the transport along the potential is determined by the asymmetry of the potential and the position of the wheel. The average velocity is a peaked function of the angular speed (or the diffusion coefficient) and the position of the peak shifts to large angular speed (or diffusion coefficient) when the diffusion coefficient (or the angular speed) increases. There exists an optimal angular speed (or diffusion coefficient) at which the effective diffusion coefficient takes its maximal value. Remarkably, the giant acceleration of diffusion is observed by suitably adjusting the system parameters. The parameters corresponding to the maximum effective diffusion coefficient are not the same as the parameters at which average velocity is maximum.
|
Coupling of lipid membrane elasticity and in-plane dynamics
2017-07-19 [10.1103/PhysRevE.96.012410] |
|
Publisher's Note: Asymmetric transmission of sound wave in c...
2017-07-19 [10.1103/PhysRevE.96.019901] |
|
Machine-learning approach for local classification of crysta...
2017-07-19 [10.1103/PhysRevE.96.011301] |
|
Modulated phases in a three-dimensional Maier-Saupe model wi...
2017-07-19 [10.1103/PhysRevE.96.012137] |
|
Ballistic front dynamics after joining two semi-infinite qua...
2017-07-19 [10.1103/PhysRevE.96.012138] |
首页 |
期刊大全 |
MSDS查询 |
化工产品分类 |
生物活性化合物 |
关于我们 |
免责声明:知识产权问题请联系 service1@chemsrc.com
Copyright © 2026 ChemSrc All Rights Reserved