European Journal of Pharmacology 2012-11-20

Evidence for a functional coupling of the NMDA and glycine recognition sites in synaptic plasma membranes.

Angela H Rhodes, Matthew J Riding, Laura E McAllister, Katherine Lee, Kirk T Semple

Index: Eur. J. Pharmacol. 188(1) , 63-70, (1990)

Full Text: HTML

Abstract

Activation of the N-methyl-D-aspartate (NMDA) receptor complex is subject to modulation via interactions at a coupled [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM). We examined the effect of the potent and specific glycine site antagonists, 1-hydroxy-3-amino-2-pyrrolidone (HA-966) and 1-aminocyclobutane-1-carboxylate (ACBC), on the NMDA recognition site. These glycine analogs were found to significantly stimulate the binding of the competitive NMDA antagonist, [3H]3-(2-carboxypiperazin-4-y1)propyl-1-phosphonate ([3H]CPP) in a dose-dependent fashion, whereas both compounds inhibited NMDA-specific L-[3H]glutamate (agonist) binding. Additionally, both glycine antagonists reduced the binding of [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) to SPM, a functional assessment of activation of the NMDA receptor-channel complex. The glycine site agonists, glycine and serine reversed these effects in a dose-dependent manner, with the serine reversal being stereospecific for D-serine. The relative potencies of these compounds in reversing the glycine antagonist effects on the NMDA recognition site corresponded with their ability to competitively displace strychnine-insensitive [3H]glycine binding. These results provide evidence for a functional coupling between the glycine and NMDA recognition sites and further, may provide a mechanism by which compounds interacting at the glycine recognition site may modulate NMDA receptor activity.


Related Compounds

Related Articles:

[Change in the level of 1-aminochloropropane-1-carbonic acid. Activity of a protein inhibitor of polygalacturonase, intensity of formation of oligouronides in apples during ripening and treatment with haloethane derivatives and aminoethoxyvinylglycine].

2003-01-01

[Prikl. Biokhim. Mikrobiol. 39(4) , 461-4, (2003)]

Glycine antagonist action of 1-aminocyclobutane-1-carboxylate (ACBC) in Xenopus oocytes injected with rat brain mRNA.

1989-08-22

[Eur. J. Pharmacol. 167(2) , 291-4, (1989)]

Ethylene biosynthesis: processing of a substrate analog supports a radical mechanism for the ethylene-forming enzyme.

1998-01-01

[Chem. Biol. 5(1) , 49-57, (1998)]

Dietary N-3 fatty acids inhibit ischaemic and excitotoxic brain damage in the rat.

1993-01-01

[Brain Res. Bull. 32(3) , 223-6, (1993)]

1-aminocyclobutane[11C]carboxylic acid, a potential tumor-seeking agent.

1979-10-01

[J. Nucl. Med. 20(10) , 1055-61, (1979)]

More Articles...