Inhibition of Na(+)-K+ pump alleviates the shortening of action potential duration caused by metabolic inhibition via blockade of KATP channels in coronary perfused ventricular muscles of guinea-pigs.
T Abe, T Sato, T Kiyosue, T Saikawa, T Sakata, M Arita
Index: J. Mol. Cell. Cardiol. 31(3) , 533-42, (1999)
Full Text: HTML
Abstract
The Na(+)-K+ pump is a consumer of intracellular ATP. We therefore examined whether blockade of the Na(+)-K+ pump by cardiac glycosides could inhibit ATP-sensitive K+ (KATP) channels and prolong the action potential duration (APD) of the guinea-pig ventricular muscles perfused with Tyrode's solution via the coronary artery and stimulated at 3 Hz. The metabolic inhibition (MI) achieved by application of 0.1 microM carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (a mitochondrial uncoupler) shortened the APD in a time-dependent manner. When dihydroouabain (DHO, 5 microM) was introduced 5 min but not 10 min after introduction of MI, the APD shortening was significantly attenuated. Application of glibenclamide (1 microM), a blocker of KATP channels, introduced both 5 and 10 min after MI also alleviated the APD shortening: DHO did not alleviate the APD shortening effect produced by cromakalim (5 microM), a KATP-channel opener. In separate experiments using whole-cell patch-clamp techniques, we found that this concentration of DHO (5 microM) depressed the Na(+)-K+ pump current of the guinea-pig ventricular myocytes from 210 to 100 pA (at 0 mV) or by 49.5%. We conclude that, during early phase (approximately 5 min) of MI, the APD shortening mostly results from the activation of KATP channels, and that even a approximately 50% inhibition of the Na(+)-K+ pump by DHO leads to the blockade of KATP channels and eventual lengthening of the APD.
Related Compounds
Related Articles:
Sodium-potassium-ATPase electrogenicity in cerebral precapillary arterioles.
2000-07-01
[Am. J. Physiol. Heart Circ. Physiol. 279(1) , H351-60, (2000)]
2012-08-01
[Fundam. Clin. Pharmacol. 26(4) , 503-12, (2012)]
1998-01-01
[J. Cardiovasc. Pharmacol. 31(1) , 146-56, (1998)]
Isoform-specific function and distribution of Na/K pumps in the frog lens epithelium.
2000-11-15
[J. Membr. Biol. 178(2) , 89-101, (2000)]
2004-01-01
[J. Neurophysiol. 91(1) , 239-47, (2004)]