Journal of Neuroscience 1999-03-15

The distribution of zinc selenite and expression of metallothionein-III mRNA in the spinal cord and dorsal root ganglia of the rat suggest a role for zinc in sensory transmission.

R A Velázquez, Y Cai, Q Shi, A A Larson

Index: J. Neurosci. 19(6) , 2288-300, (1999)

Full Text: HTML

Abstract

Zinc appears to play a role in synaptic transmission in the hippocampus. We tested the hypothesis that zinc is similarly involved in sensory transmission by determining whether vesicular zinc and metallothionein-III (MT-III), a zinc-binding protein, are localized in rat primary afferent neurons. MT-III mRNA, measured using RT-PCR, and MT-III immunoreactivity, were both present in the spinal cord as well as the thoracic and lumbar dorsal root ganglia (DRG). At a time (24 hr) that allows retrograde transport of zinc selenite to cell bodies, only small-diameter neurons and neurons scattered throughout lamina V of the spinal cord were stained by sodium selenite injected intrathecally. This stain disappeared if a ligature was placed on the dorsal root to block axonal transport, demonstrating that these cells are, in fact, zinc-containing primary afferent neurons. When assessed 1 hr after sodium selenite, stain was distributed throughout the neuropil of the spinal cord, especially in lamina III and the area surrounding the central canal. Even in rhizotomized animals, large- and small-diameter DRG neuronal cell bodies were also stained with either selenite (1 hr) or 6-methoxy 8-para-toluene sulfonamide quinoline (TSQ). Paradoxically, this unique pool of zinc was eliminated in large-diameter DRG neurons after neonatal capsaicin treatment, which had no effect on selenite stain or MT-III mRNA content in small-diameter DRG neurons. In summary, we demonstrate that there is a population of capsaicin-insensitive small-diameter primary afferent neurons that are zinc-containing. In addition, there is a unique pool of capsaicin-sensitive zinc that is associated with large-diameter cell bodies.


Related Compounds

Related Articles:

Polycrystalline ZnS(x)Se(1 - x) thin films deposited on ITO glass by MBE.

2003-01-01

[J. Zhejiang Univ. Sci. 4(2) , 131-5, (2003)]

Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice.

2008-04-01

[Biometals 21(2) , 151-8, (2008)]

More Articles...