Targeting kidney CLC-K channels: pharmacological profile in a human cell line versus Xenopus oocytes.
Paola Imbrici, Antonella Liantonio, Antonella Gradogna, Michael Pusch, Diana Conte Camerino
Index: Biochim. Biophys. Acta 1838(10) , 2484-91, (2014)
Full Text: HTML
Abstract
CLC-K chloride channels play a crucial role in kidney physiology and genetic mutations, affecting their function are responsible for severe renal salt loss in humans. Thus, compounds that selectively bind to CLC-Ka and/or CLC-Kb channels and modulate their activity may have a significant therapeutic potential. Here, we compare the biophysical and pharmacological behaviors of human CLC-K channels expressed either in HEK293 cells or in Xenopus oocytes and we show that CLC-K channel properties are greatly influenced by the biochemical environment surrounding the channels. Indeed, in HEK293 cells the potentiating effect of niflumic acid (NFA) on CLC-Ka/barttin and CLC-Kb/barttin channels seems to be absent while the blocking efficacy of niflumic acid and benzofuran derivatives observed in oocytes is preserved. The NFA block does not seem to involve the accessory subunit barttin on CLC-K1 channels. In addition, the sensitivity of CLC-Ks to external Ca(2+) is reduced in HEK293 cells. Based on our findings, we propose that mammalian cell lines are a suitable expression system for the pharmacological profiling of CLC-Ks. Copyright © 2014 Elsevier B.V. All rights reserved.
Related Compounds
Related Articles:
An orphan esterase ABHD10 modulates probenecid acyl glucuronidation in human liver.
2014-12-01
[Drug Metab. Dispos. 42(12) , 2109-16, (2014)]
Role of anoctamin-1 and bestrophin-1 in spinal nerve ligation-induced neuropathic pain in rats.
2015-01-01
[Mol. Pain 11 , 41, (2015)]
2010-01-01
[Chem. Res. Toxicol. 23 , 171-83, (2010)]
Excitation of rat sympathetic neurons via M1 muscarinic receptors independently of Kv7 channels.
2014-12-01
[Pflugers Arch. 466(12) , 2289-303, (2014)]
Chemical genetics reveals a complex functional ground state of neural stem cells.
2007-05-01
[Nat. Chem. Biol. 3(5) , 268-273, (2007)]