Inhibition of 3,4-methylenedioxymethamphetamine metabolism leads to marked decrease in 3,4-dihydroxymethamphetamine formation but no change in serotonin neurotoxicity: implications for mechanisms of neurotoxicity.
Melanie Mueller, Jie Yuan, Concepcion Maldonado Adrian, Una D McCann, George A Ricaurte
Index: Synapse 65(10) , 983-90, (2011)
Full Text: HTML
Abstract
3,4-Methylenedioxymethamphetamine (MDMA)'s O-demethylenated metabolite, 3,4-dihydroxymethamphetamine (HHMA), has been hypothesized to serve as a precursor for the formation of toxic catechol-thioether metabolites (e.g., 5-N-acetylcystein-S-yl-HHMA) that mediate MDMA neurotoxicity. To further test this hypothesis, HHMA formation was blocked with dextromethorphan (DXM), which competitively inhibits cytochrome P450 enzyme-mediated O-demethylenation of MDMA to HHMA. In particular, rats were randomly assigned to one of four treatment groups (n = 9-12 per group): (1) Saline/MDMA; (2) DXM/MDMA; (3) DXM/Saline; (4) Saline/Saline. During drug exposure, time-concentration profiles of MDMA and its metabolites were determined, along with body temperature. One week later, brain serotonin (5-HT) neuronal markers were measured in the same animals. DXM did not significantly alter core temperature in MDMA-treated animals. A large (greater than 70%) decrease in HHMA formation had no effect on the magnitude of MDMA neurotoxicity. These results cast doubt on the role of HHMA-derived catechol-thioether metabolites in the mechanism of MDMA neurotoxicity.Copyright © 2011 Wiley-Liss, Inc.
Related Compounds
Related Articles:
2011-04-01
[J. Anal. Toxicol. 35(3) , 162-9, (2011)]
2010-01-01
[J. AOAC Int. 93(2) , 556-61, (2010)]
2012-07-07
[Toxicol. Lett. 212(1) , 38-47, (2012)]
2012-03-01
[J. Sep. Sci. 35(5-6) , 726-33, (2012)]
2012-06-15
[Water Res. 46(10) , 3304-14, (2012)]