Clinical and Experimental Pharmacology and Physiology 2015-03-01

Mechanisms underlying the renoprotective effect of GABA against ischaemia/reperfusion-induced renal injury in rats.

Shuhei Kobuchi, Ryosuke Tanaka, Takuya Shintani, Rie Suzuki, Hidenobu Tsutsui, Mamoru Ohkita, Yasuo Matsumura, Kazuhide Ayajiki

Index: Clin. Exp. Pharmacol. Physiol. 42(3) , 278-86, (2015)

Full Text: HTML

Abstract

Excitation of the renal sympathetic nervous system is important for the development of ischaemic acute kidney injury (AKI) in rats. We reported that intravenous treatment with GABA has preventive effects against ischaemia/reperfusion (I/R)-induced renal dysfunction with histological damage in rats; however, the mechanisms underlying these effects on renal injury remain unknown. Thus, the aim of the present study was to clarify how GABA mechanistically affects ischaemic AKI in rats. Ischaemic AKI was induced in rats by clamping the left renal artery and vein for 45 min and then reperfusing the kidney to produce I/R-induced injury. Treatment with the GABAB receptor antagonist CGP52432 (100 nmol/kg, i.v., or 1 nmol/kg, i.c.v.) abolished the suppressive effects of 50 μmol/kg, i.v., GABA on enhanced renal sympathetic nerve activity (RSNA) during ischaemia, leading to elimination of the renoprotective effects of GABA. Intracerebroventricular treatment with 0.5 μmol/kg GABA or i.v. treatment with 1 μmol/kg baclofen, a selective GABAB receptor agonist, prevented the I/R-induced renal injury equivalent to i.v. treatment with GABA. Conversely, i.v. treatment with 10 μmol/kg bicuculline, a GABAA receptor antagonist, failed to affect the preventive effects of GABA against ischaemic AKI. We therefore concluded that GABAB receptor stimulation in the central nervous system, rather than peripheral GABAB receptor stimulation, mediates the preventive effect of GABA against ischaemic AKI by suppressing the enhanced RSNA induced by renal ischaemia. © 2014 Wiley Publishing Asia Pty Ltd.


Related Compounds

Related Articles:

GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination.

2015-02-01

[J. Neurosci. Res. 93(2) , 285-95, (2014)]

Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.

2010-01-01

[Chem. Res. Toxicol. 23 , 171-83, (2010)]

Translating clinical findings into knowledge in drug safety evaluation--drug induced liver injury prediction system (DILIps).

2011-12-01

[J. Sci. Ind. Res. 65(10) , 808, (2006)]

Chemical genetics reveals a complex functional ground state of neural stem cells.

2007-05-01

[Nat. Chem. Biol. 3(5) , 268-273, (2007)]

Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.

2008-10-09

[J. Med. Chem. 51 , 5932-42, (2008)]

More Articles...