Journal of Food Science 2012-07-01

Influence of lipid content and lipoxygenase on flavor volatiles in the tomato peel and flesh.

Paige Ties, Sheryl Barringer

Index: J. Food Sci. 77(7) , C830-7, (2012)

Full Text: HTML

Abstract

Ten different varieties of tomatoes were separated into peel and flesh and each portion was measured separately. Headspace volatiles were measured in real time using selected ion flow tube mass spectrometry. Lipoxygenase activity was measured using the adsorption of conjugated dienes formed by lipoxygenase. Lipid was extracted and fatty acids were quantified using a gas chromatograph. Volatiles were significantly greater in the peel than flesh when there was a significant difference. The lipoxygenase activity of flesh and peel correlated with the volatiles produced by the lipoxygenase pathway. There was no correlation with other volatiles, which are not dependent on lipid oxidation by lipoxygenase. The lipoxygenase activity, total fatty acid content, and linolenic acid of the peel were greater than the flesh, which is directly related to an increase in fresh, green volatiles. Addition of exogenous lipoxygenase had no effect on lipoxygenase-derived volatiles formed. The addition of linoleic acid caused an increase in hexanal, 1-hexanol, and (E)-2-heptenal in the flesh and (E)-2-heptenal in the peel. Stored unrefrigerated peel had higher volatile concentrations, whereas refrigerated peel had significantly lower concentration than day 0. Storage decreased lipoxygenase activity in the unrefrigerated and refrigerated peel, but had no effect on the fatty acid content. Overall, linolenic acid was the most important to the formation of headspace volatiles, but lipoxygenase activity and unknown factors are also important.The peel of a tomato is most beneficial to the production of volatiles associated with the fresh aroma of tomatoes; therefore, it should be used in the processing of tomato products to produce a fresh, green aroma rather than being removed. Knowledge of the effects of lipoxygenase activity, total fatty acid content, and fatty acid profile on flavor volatiles will allow for better selection of a variety for raw consumption.© 2012 Institute of Food Technologists®


Related Compounds

Related Articles:

Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation.

2015-03-01

[Appl. Microbiol. Biotechnol. 99(5) , 2291-304, (2015)]

Acetonitrile adduct formation as a sensitive means for simple alcohol detection by LC-MS.

2014-11-01

[J. Am. Soc. Mass Spectrom. 25(11) , 1987-90, (2014)]

Antioxidant activity of protocatechuates evaluated by DPPH, ORAC, and CAT methods.

2016-03-01

[Food Chem. 194 , 749-57, (2015)]

The EpiOcular Eye Irritation Test (EIT) for hazard identification and labelling of eye irritating chemicals: protocol optimisation for solid materials and the results after extended shipment.

2015-05-01

[Altern. Lab. Anim. 43 , 101-27, (2015)]

Convenient QSAR model for predicting the complexation of structurally diverse compounds with β-cyclodextrins

2009-01-01

[Bioorg. Med. Chem. 17 , 896-904, (2009)]

More Articles...